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　　Abstract　　Computat ional encoding DNA sequence design is one of the most important steps in molecular computat ion.A lot of re-

search w ork has been done to design reliable sequence library.A revised method based on the support system developed by Tanaka et al.
is proposed here with di fferent crit eria to construct f itness function.Then we adapt part icle swarm optimization(PSO)algorithm to our

encoding problem.By using the new algorithm , a set of sequences wi th good quali ty is generated.The result also show s that our PSO-
based approach could rapidly converge at the minimum level for an output of the simulation model.The celeri ty of the algorithm fit s our re-

quirements.
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　　DNA computing relies on biochemical reactions

of DNA molecules and may result in inco rrect compu-
tations if the DNA sequences have not good quality.
That is w hy codew ord design is considered as one of

i ts most important steps.DNA sequences used in

DNA computing must satisfy several constraints ,
which focus on the design of DNA sequences that re-
duce the possibility of undesirable reactions.

In the published literatures[ 1—4] , the constraints

H-measure , similarity , continuity , melting tempera-
ture , GC content and free energy have of ten been

mentioned to select good DNA sequences.Tanaka et

al.have developed a support system for sequence de-
sign in DNA computing .They offered some sequence

fitness cri teria , and generated sequences using simu-
lated annealing

[ 5]
.Here , we use the similar method

w ith different cri teria to const ruct more reasonable e-
valuation function.Then w e consider it as fitness

function in our adapted part icle swarm optimization

(PSO)approach fo r DNA sequence design.

PSO is a generic heuristic optimization algo rithm

based on the concept of swarm intelligence.It re-
quires less computation times and less memory.Un-
like GA , it has no evolution operators such as

crossover and mutation.It is easy to implement and

has fewer parameters to adjust.Till now PSO has

been used to solve many engineering and economic

problems.However , it has not been employed so far

in DNA computing .Here , we apply the adapted PSO

approach to search fo r good DNA sequences w ith fit-
ness function ment ioned above.

This paper is organized as follow s:fitness func-
tion is constructed in Section 1 , follow ed by a brief

overview of PSO algorithm and its implementation to

DNA encoding.The results and analy ses are in Sec-
tion 4.Sect ion 5 is the conclusion.

1　Constraints formulation used in the fitness

function

Many experiments show that randomly generat-
ed codes are inadequate for accurate DNA computa-
tion.We desire a set of DNA sequences to fo rm stable

duplex wi th their complements.We also need to en-
sure that tw o sequences w hich are no t complemented

each other do no t interact.As in many published lit-
eratures , several criteria have been used to estimate

the quality of the library.The DNA sequence design

problem can be w rit ten as[ 6] :
min F(x)=(f 1(x), f 2(x), …, f n(x))(1)

where f i(x)denotes the fi tness measure of the con-
st raint such as H-measure , secondary st ructure , con-
tinuity , melting temperature , GC content and so on.



We tried to accumulate the objectives as many as pos-
sible , but it is neither proper nor necessary to consid-
er all of them .Fo r their special relations , we need to

choose them carefully .Tanaka et al.gave a method

to calculate correlation coefficients of them , and then

predigested the constraint set.Based on that ap-
proach , we choose four constraints , distance , conti-
nuity , GC content , and Tm to form fi tness function.
More information about this approach can be obtained

in Ref.[ 5] .

1.1　Formulation of distance const raint

The distance constraint of two sequences both

complementary and parallel is considered in this pa-
per.It computes how many nucleotides are different

in the same direction of tw o given sequences to keep

each sequence as unique as possible , including position

shift.And it also calculates how many nucleo tides are

complementary betw een the given sequences to pre-
vent cross-hybridization of two sequences.It is de-
f ined as follow s:

F HD(΢)=∑
n

i=1
fHD(x i) (2)

f HD(x i)= ∑
n

j=1
(HD(x i , xj)+HD(x i , xj

※
))(3)

1.2　Formulation of continuity

Same bases occur continuously (such as

“AAAAA ”) in a sequence may cause unexpected

structures.Continuity is an important factor to mea-
sure the quali ty of a sequence.It s formulat ion is de-
scribed as[ 6] :

Fcon(΢)=∑
n

i=1
f con(xi) (4)

f con(x)= ∑
L-t+1

i=1
∑
α∈ Λ

T(cα(x , i), t)
2

(5)

Cα(x , i)=
c , if  c , s.t.x

i
≠α, x

i+j
=α

for 1 ≤ j ≤ c , x
i+j+1

≠α;
0 , otherwise.

(6)

1.3　Formulation of GC content

The percentage of G and C in a sequence can af-
fect chemical properties of DNA sequences.Well-de-
f ined GC content can keep the melting temperature u-
niform , and reduce the probability of occurring non-
specific hybridization ef fectively.The formulat ion is

FGC(΢)=∑
n

i=1
f GC(x i) (7)

fGC(x i)=(GC(x i)-GCdefined)
2

(8)

1.4　Fo rmulation of Tm

The melting temperature is the temperature in e-
quilibrium at w hich 50% of the oligonucleotides have

hybridized to their perfect complements and 50% of

the oligonucleotides are separated.All of the se-
quences in the library need to have similar melting

temperatures o r melting temperatures above some

threshold.There are many equations to calculate

melting temperature such as the Wallace 2 —4 rule[ 7] ,
the GC%method[ 8] , and the nearest-neighbor mod-
el[ 9] .Here , we will choose the nearest-neighbor
model.The description of this measure is

F T
m
(΢)=∑

n

i=1
fT

m
(xi) (9)

f T
m
(xi)=(Tm(xi)- T m(΢))

2
(10)

Tm =
ΔH

0

R ln(CT/α)
+ΔS

0
(11)

where T m(x i)is the melting temperature of the gen-
erated sequence ,  T m(΢)is the target melting tem-
perature , R is the gas constant , CT is the concentra-

tion , ΔH
0
is the enthalpy and ΔS

0
is the entropy.

Parameter αis set to be 1 for self-complementary and

be 4 for non-self-complementary.Parameters ΔH
0

and ΔS
0
are calculated based on the nearest-neighbor

model
[ 9 , 10]

.

1.5　Const ruct fitness funct ion

We normalize all the evaluation terms above , and
then get the contribution ratio as show n in Table 1.
More detail information about this process can be ob-
tained in Ref.[ 5] .

Table 1.　Contribution ratio

f i f HD fGC f con f T
m

wi 0.3242 0.1347 0.3100 0.2311

　　The fitness function can be described as:

f =∑
i

w i f i ,

i ∈ {distance , GC content , T m , continui ty}

(12)

2　PSO algorithm and its implementation to
DNA encoding

2.1　A brief overview of PSO algori thm

PSO algorithm w as int roduced by Kennedy and
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Eberhart in 1995[ 11 ,12] .It is motivated f rom simula-
tion of the behavior of social systems such as fish

schooling and birds flocking .In PSO , the system is

initialized wi th a population of random solutions and

searches for optima by updating generations.The po-
tential solutions , called particles , f ly through the

problem space by follow ing the current optimum par-
ticles.

PSO algorithm fo r N-dimensional problem for-
mulation can be described as follow s:Let X be the

part icle posit ion and V be i ts speed in a searched

space.Consider i as the particle in the to tal swarm.
Now the position of the i th particle can be represent-
ed as X i =(x i1 , xi 2 , … , xiN)in the N-dimensional

space.All the positions are evaluated by a fitness

function.The best previous posi tion of the i th parti-
cle is stored and represented as pbcst.The best value

among all pbest is represented as gbest.The i th par-
ticle velocity is represented as V i =(v i 1 , v i2 , … ,
viN).The k th iteration of the individual posi tion and

i ts velocity can be formulated as equat ions below :

v
k+1
i j =ω＊v

k
ij +c1 rand()＊(pbest

k
ij -x

k
ij)

+c2 rand()＊(gbest
k
j -x

k
ij) (13)

x
k+1
ij = x

k
ij +v

k+1
ij ,

i =1 ,2 , …, S ;j =1 , 2 , … , N (14)
where N is the number of dimensions in a particle , S
is the number of particles , ωis the inertia weight fac-
tor , c1 and c2 are the acceleration constants , rand 1()
and rand2()are the uniform random values in the

range [ 0 ,1] , v
k
ij is the veloci ty of the j th dimension

in the i th particle , x
k
ij is the current position of the

j th dimension in the i th particle at iteration k.Fig .1
describes a particle' s movement in the 2-dimensional

space.

Fig.1.　A particle' s movement in the tw o-dimensional space.

In this paper , we decrease inertia w eight ωlin-

early f rom the maximum ωmax to the minimum ωmin
during a run

[ 13]
.It s value is set acco rding to the fol-

low ing equation:

ω=ωmax -
ωmax -ωmin

itermax
＊iter (15)

where itermax denotes the maximum iteration num-
ber , and iter denotes the current iterat ion number.
The pseudo code of the basic PSO algorithm is as fol-
low s:

For each particle {
　Initialize particle;
}
While maximum iterations or minimum criteria is no t

attained{
　For each particle{
　　Calculate fitness value;
　　If(fi tness value <pbest){
　　Update pbest;
　　If(pbest < gbest)Update gbest;
　　}
　}
　For each particle{
　　Calculate particle veloci ty v acco rding to Eq.
(13);

　　If(v >Vmax)v=Vmax ;
　　Else if(v<-Vmax)v=-Vmax;
　　Calculate particle position x according to Eq.
(14);

　　If(x >Xmax)x =Xmax;
　　Else if(x <-Xmax)x=-Xmax;
　}
}

2.2　Implementation of PSO method in DNA encod-
ing

This paper presents a quick solution to search for

good DNA sequences using the PSO algorithm.
Tw enty 20-mer DNA sequences are connected one by

one in the same direction to form a 400-mer DNA

strand.We denote it as a particle , and then ten

st rands like that form a particle swarm.We define A

=0 , C=1 , G=2 , T =3 , and give an example of a

20-mer DNA sequence in Fig.2.

Fig.2.　An example of a 20-mer DNA sequence(here A=0 , C=
1 , G=2 , T=3).

Inertia weight linearly decreases f rom 0.9 to

714 w ww.tandf.co.uk/ journals　Prog ress in Natural Science　Vol.17 No.6　2007



0.4 during a run using Eq.(11).Fo r this discrete

problem , we let X i=[ X i] mod4 in step 5.The detail

steps are given bellow .

Step 1:Initialize particle positions and veloci-
ties.Randomly generate particles X 1 , X 2 , … , X 10.
Each of them is a 400-mer DNA sequence.The parti-
cle velocities V1 , V 2 , … , V10 are also generated ran-
domly , where v ij ∈ R .

Step 2:Use Eq.(12)to calculate all the parti-
cles' fi tness values.

Step 3:Update pbest and then gbest based on

the values.If the new value is better than the previ-
ous pbest , the new value is set to be pbest.

Step 4:If the stopping criteria are met , the po-
sitions of particles represented by gbest are the optimal

solut ion.Otherw ise , new velocities for all the dimen-
sions in each particle are calculated using Eq.(13).

Step 5:The position of each part icle is updated

using Eq.(14).Let X i=[ X i] mod4 , return to step 2.

　　The flow chart is described in Fig.3.

Fig.3.　The f low of PSO algorithm for DNA sequence design.

3　Results and analysis

Finally , we generate a set of good DNA se-
quences by using adapted PSO algori thm , and evalu-
ate it with several typical criteria to assess the ef fec-
tiveness of the proposed algorithm.The generated se-
quences and their evaluation values are listed in Table 2.

Table 2.　The generated sequences and their ev aluation values

Words distance Con GC Tm ΔG Hairpin

GTCAAATTCCCTCTATCGTC 289 18 0.45 59.9257 -24.58 0

AGCGATAGTAGATCACCTGC 295 0 0.50 63.4162 -26.21 3

CACGATATAGCTTCGTGCCG 270 0 0.55 65.5196 -27.69 22

AATACACCGCTCACCAAGGA 268 0 0.50 65.9901 -27.22 0

AACAGGGAAGAATGCAGAGG 260 9 0.50 64.4354 -26.45 0

CCTCTACCAGCCAATGATGC 284 9 0.55 65.2329 -27.00 0

TTAGGACTCGACGCCACTCC 261 0 0.60 68.1555 -28.50 0

CCATGACCGAGGATCCACGT 256 0 0.60 68.5855 -28.61 0

CGCCATTATCAGGCCTTTAC 290 9 0.50 63.3848 -26.30 3

ACACAGTGGACGCACATACA 305 0 0.50 66.4720 -27.60 3

TTATCCCGCCTCTTCTCCGT 258 9 0.55 67.4031 -27.90 0

AATACGGTTCAAGCGGCTTC 275 0 0.50 65.6572 -27.50 3

TAAAGGCGCGTGATCGGAAG 276 0 0.55 67.5152 -28.50 0

TTGT TCGGGATTGAGCAACT 277 9 0.45 64.6279 -26.70 6

GTCACTGAGTCAGCACTCAT 305 0 0.50 64.0660 -26.50 25

CCATAAACTGCCAGCTCGCG 276 9 0.60 68.7203 -29.10 0

CAACATAGAGTCAGGCGCTG 289 0 0.55 65.4053 -27.40 0

CCAATGAGTCACCTCGTTCG 309 0 0.55 65.3200 -27.30 3

GGGGTGGAGGCCCAACTATT 288 25 0.60 68.7331 -28.20 9

CAGCGGTCTGAACCTCCATA 282 0 0.55 66.0663 -27.40 6

　　In it fo r each st rand , distance , continuity , GC
content , melt ing temperature , f ree energy and hair-
pin are reported.Compared to other sequences f rom

previous publicat ions[ 14—16] , our approach can gener-

ate better or comparative strings in all object ives.

Otherwise , the executive time also fit s our re-
quirements , and it seems very ef fective to f ind the op-
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timum solution.At the end of i terations , the fitness

v alue will approximate to be stable.The convergence

curve of the algorithm is show n in Fig .4.

Fig.4.　Convergence curve.

We have been trying to apply our approach to a

large scale.But the speed slow s down when the se-
quence library comes big.Now several parameters are

being adjusted fo r better results.

4　Conclusions

In this paper , we try to apply PSO algo rithm to

produce good sequences for DNA computing.The re-
sults show that our adapted PSO algo rithm is ef ficient

to generate a set of serials wi th good quality .And we

are also content with it s celerity.Although it seems a

lit tle rough and still needs some improvements , it has
already indicated the advantage of PSO algo rithm

such as easy implementation and few parameters.The
approach will be applied to a larger scale af ter the pa-
rameters are chosen properly .

For the facto rs controlling DNA computing are

still not very clearly known , algo rithm improvement

is not enough fo r the entire problem.Much w ork

needs to be done in the future , such as further re-
searching DNA chemist ry and exploring accurate

model used in DNA sequence design.
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