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Abstract

Computational encoding DNA sequence design is one of the most important steps in molecular computation. A lot of re-

search work has been done to design reliable sequence library. A revised method based on the support system developed by Tanaka et al.

is proposed here with different criteria to construct fitness function. Then we adapt particle swarm optimization (PSO) alorithm to our

encoding problem. By using the new algorithm, a set of sequences with good quality is generated. The result also shows that our PSO-

based apprwach could rapidly converge at the minimum level for an output of the simuhtion model. The celerity of the alsorithm fits our re-

quirements.

Keywords:

DNA computing relies on biochemical reactions
of DNA molecules and may result in incorrect com pu-
tations if the DNA sequences have not good quality.
That is why codew ord design is considered as one of
its most important steps. DNA sequences used in
DNA computing must satisfy several constraints,
which focus on the design of DNA sequences that re-
duce the possibility of undesirable reactions.

In the published literatures '~

H-measure, similarity, continuity, melting tempera-

, the constraints

ture, GC content and free energy have often been
mentioned to select good DNA sequences. Tanaka et
al. have developed a support system for sequence de-
sign in DNA computing. They offered some sequence
fitness criteria, and generated sequences using simu-

5 ..
(3 Here, we use the similar method

lated annealing
with different criteria to construct more reasonable e-
valuation function. Then we consider it as fitness
function in our adapted particle swarm optimization

(PSO) approach for DNA sequence design.

PSO is a generic heuristic optimization algorithm
based on the concept of swarm intelligence. It re-
quires less computation times and less memory. Un-

hke GAv

crossover and mutation. It is easy to implement and

it has no evolution operators such as

has fewer parameters to adjust. Till now PSO has

DNA comp uting, comp utational encoding DNA sequences, PSO algorithm fitness function.

been used to solve many engineering and economic
problems. However, it has not been employed so far
in DNA computing. Here, we apply the adapted PSO
approach to search for good DNA sequences with fit-
ness function mentioned above.

This paper is organized as follows: fitness func-
tion is constructed in Section 1, followed by a brief
overview of PSO algorithm and its implementation to
DNA encoding. The results and analyses are in Sec-
tion 4. Section 5 is the conclusion.

1 Constraints formulation used in the fitness
function

Many experiments show that randomly generat-
ed codes are inadequate for accurate DNA computa-
tion. We desire a set of DNA sequences to form stable
duplex with their complements. We also need to en-
sure that two sequences which are not complemented
each other do not interact. As in many published lit-
eratures several criteria have been used to estimate
the quality of the library. The DNA sequence design

problem can be written as ¥,

min F(x)= (f1(x), f2(x) o fu(x)) (1)
where f; (x) denotes the fitness measure of the con-
straint such as H-measure, secondary structure, con-
tinuity, melting temperature, GC content and so on.
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We tried to accumulate the objectives as many as pos-
sible, but it is neither proper nor necessary to consid-
er all of them. For their special relations, we need to
choose them carefully. Tanaka et al. gave a method
to calculate correlation coefficients of them, and then
predigested the constraint set. Based on that ap-
proach, we choose four constraints, distance, conti-
nuity, GC content, and T, to form fitness function.
M ore inform ation about this approach can be obtained

in Ref. [5].
1.1 Formulation of distance constraint

The distance constraint of two sequences both
complementary and parallel is considered in this pa-
per. It computes how many nucleotides are different
in the same direction of two given sequences to keep
each sequence as unique as possible, including position
shift. And it also calculates how many nucleotides are
complementary between the given sequences to pre-
vent cross-hybridization of two sequences. It is de-
fined as follows:

Fup (D= D0 fup (x) )
i=1
fip )= 25 (HD (e x)+ HD (xin %)) (3)
=1

1.2 Formulation of continuity

Same bases occur continuously (such as
“AAAAA”) in a sequence may cause unexpected
structures. Continuity is an important factor to mea-
sure the quality of a sequence. Its formulation is de-
scribed ad @ ;

Fcon(2> - chnn(xi) (4)
i=1
L—t1

fmn(x): 2

i—1
. i ity
e, if dessite x Fa x =«
. itjt+1
for 1<j<<e¢c x'7 #
0, otherwise.

DT (xs ) ) (5
aE A

Ca(Xa l) -

(6)

1.3 Formulation of GC content

The percentage of G and C in a sequence can af-
fect chemical properties of DNA sequences. Well-de-
fined GC content can keep the melting temperature u-
niform, and reduce the probability of occurring non-
specific hy bridization effectively. The formulation is

Foe(2 = D foe(x) @)
i=1

foc(x) = (GC(x) = GCuppa) (8

1.4 Fommulation of T

The melting temperature is the temperature in e-
quilibrium at which 50% of the oligonucleotides have
hy bridized to their perfect complements and 50 % of
the oligonucleotides are separated. All of the se-
quences in the library need to have similar melting
temperatures or melting temperatures above some
threshold. There are many equations to calculate
melting temperature such as the Wallace 2—4 rule! "',
the GC % method 8, and the nearest-neighbor mod-
™. Here,

model. The description of this measure is
Fr (=D fr (x) 9
Zilr,
fr (x)= (T, (x)— T, (DY 10

0

we will choose the nearest-neighbor

__AF
B RIn(Cr/ )

where T, (x;) is the melting temperature of the gen-

T +Ag° (11)

erated sequence, T, () is the target melting tem-
perature, R is the gas constant, Cr is the concentra-
tion, AH" is the enthalpy and AS? is the entropy.
Parameter « is set to be 1 for self-complementary and
be 4 for nomself-complementary. Parameters AR’

and AS® are calculated based on the nearest-neighbor
model * .

1.5 Construct fitness function

We normalize all the evaluation terms above, and
then get the contribution ratio as shown in Table 1.
More detail information about this process can be ob-

tained in Ref. [ 5] .

Table 1.  Contribution ratio
Ji S Jec Sem ! T,
w; 0.3242 0.1347 0.3100 0.2311

The fitness function can be described as:
f: Zwlfh
i € {distance, GC content, T, continuity}
a2

2 PSO algorithm and its implementation to
DNA encoding

2.1 A brief overview of PSO algorithm

PSO algorithm was introduced by Kennedy and



714 www. tandf. co. uk/journals Progress in Natural Science Vol. 17 No.6 2007

Eberhart in 1995 "' | It is motivated from simula-
tion of the behavior of social systems such as fish
schooling and birds flocking. In PSO, the system is
initialized with a population of random solutions and
searches for optima by updating generations. The po-
tential solutions, called particles, fly through the
problem space by following the current optimum par-

ticles.

PSO algorithm for N-dimensional problem for-
mulation can be described as follows: Let X be the
particle position and V be its speed in a searched
space. Consider i as the particle in the total swarm.
Now the position of the ith particle can be represent-
edas X;= (xi1, Xxi25 *+» Xy ) in the N-dimensional
space. All the positions are evaluated by a fitness
function. The best previous position of the ith parti-
cle is stored and represented as pbcst. The best value
among all pbest is represented as gbest. The ith par-
ticle velocity is represented as V, = (v, vy, o
vy ). The kth iteration of the individual position and

its velocity can be formulated as equations below :

v'l,f-j‘l = %+ crrand O * (pbesty — x§)
+ c,rand O) ’X'(gbestf*xg) 13)
K k| kH
Xij = Xyt vy

i=12,-58;;j=12-4N as
where N is the number of dimensions in a particle, S
is the number of particles, ® is the inertia weight fac-
tor, c¢; and ¢, are the acceleration constants, rand ;O

and rand, () are the uniform random values in the
range [ 0, 1], vf;- is the velocity of the jth dimension

. . . k. .
in the ith particle, x; is the current position of the

i
jth dimension in the ith particle at iteration k. Fig. 1
describes a particle’ s movement in the 2-dimensional

space.

i

0] X

Fig. 1. A particle’ s movement in the two-dimensional space.

In this paper, we decrease inertia weight w lin-

early from the maximum ®_, to the minimum

[13

max min

during a Tun 7 . Its value is set according to the fol-
low ing equation:

W= Wy wmj;er—m:jmm *iter (15>
where iter,,,. denotes the maximum iteration num-
ber, and iter denotes the current iteration number.
The pseudo code of the basic PSO algorithm is as fol-

lows:

For each particle {
Initialize particle;
}
While maximum iterations or minimum criteria is not
attained{
For each particle {
Calculate fitness value;
If (fitness value < pbest ){
Update pbest;
If (pbest << ghest) Update ghest;
}
}

For each particle{
Calculate particle velocity v according to Eq.
(13);
If (+ > Vmax) v= Vmax;
Else if +{—Vmax) v=—"Vmax;
Calculate particle position x according to Eq.
(14);
If (x> Xmax) x=Xmax;
Else if (x<{—Xmax) x=— Xmax;

)
2.2 Implementation of PSO method in DN A encod-

ing

This paper presents a quick solution to search for
good DNA sequences using the PSO algorithm.
Twenty 20-mer DNA sequences are connected one by
one in the same direction to form a 400-mer DNA
strand. We denote it as a particle, and then ten
strands like that form a particle swarm. We define A
=0, C=1, G=2, T=3, and give an example of a
20-mer DN A sequence in Fig. 2.

ATTGCATGTACTGACGG
| 1] NERENY
3321 1320122

03230
Fig. 2. An example of a20-mer DNA sequence (here A=0, C=
I, G=2 T=3).

w—r3
o—>
——0

|
0

Inertia weight linearly decreases from 0. 9 to



Progress in Natural Science Vol 17 No. 6 2007 www. tandf. co. uk/journals 715

0.4 during a run using Eq. (11). For this discrete
problem, we let X;=[ X;] mod4 in step 5. The detail

steps are given bellow .

Step 1: Initialize particle positions and veloci-
ties. Randomly generate particles X1, X2, -+ Xio.
Each of them is a 400-mer DNA sequence. The parti-
cle velocities Vi, Vs -5 Vi are also generated ran-

domly, where v;ER.

Step2: Use Eq. (12) to calculate all the parti-
cles’ fitness values.

Step 3. Update pbest and then ghest based on
the values. If the new value is better than the previ-
ous pbest, the new value is set to be pbest.

Step 4: If the stopping criteria are met, the po-
sitions of particles represented by ghest are the optimal
solution. Otherwise; new velocities for all the dimen-
sions in each particle are calculated using Eq. (13).

Step 5: The position of each particle is updated
using Eq. (14). Let X;=[ Xi] mod4, return to step 2.

The flow chart is described in Fig. 3.

Start
/ Initialization /

i

Calculate the fitness value 4—\

Update positions
I Update pbest and gbest | and velocity
. . No
Meet stopping criteria?
Yes
‘ End ‘

Fig. 3. The flow of PSO algorithm for DN A sequence design.

3 Results and analysis

Finally, we generate a set of good DNA se-
quences by using adapted PSO algorithm, and evalu-
ate it with several typical criteria to assess the effec-
tiveness of the proposed algorithm. The generated se-
quences and their evaluation values are listed in Table 2.

Table 2. The generated sequences and their evaluation values
Words distance Con GC T, AG Hairpin
GTCAAATTCCCTCTATCGTC 289 18 0.45 59. 9257 —24.58 0
AGCGATAGTAGATCACCTGC 295 0 0.50 63. 4162 —26.21 3
CACGATATAGCTTCGTGCCG 270 0 0.55 65. 5196 —27.69 22
AATACACCGCTCACCA AGGA 268 0 0.50 65. 9901 —27.22 0
AACAGGGAAGAATGCAGAGG 260 9 0.50 64. 4354 —26.45 0
CCTCTACCAGCCAATGATGC 284 9 0.55 65. 2329 —27.00 0
TTAGGACTCGACGCCACTCC 261 0 0.60 68. 1555 —28.50 0
CCATGACCGAGGATCCACGT 256 0 0.60 68. 5855 —28.61 0
CGCCATTATCAGGCCTTTAC 290 9 0.50 63. 3848 —26.30 3
ACACAGTGGACGCACATACA 305 0 0.50 66. 4720 —27.60 3
TTATCCCGCCTCTTCTCCGT 258 9 0.55 67. 4031 —27.90 0
AATACGGTTCAAGCGGCTTC 275 0 0.50 65. 6572 —27.50 3
TAAAGGCGCGTGATCGGAAG 276 0 0.55 67. 5152 —28.50 0
TTGT TCGGGATTGAGCAACT 277 9 0.45 64. 6279 —26.70 6
GTCACTGAGTCAGCACTCAT 305 0 0.50 64. 0660 —26.50 25
CCATAAACTGCCAGCTCGCG 276 9 0.60 68. 7203 —29.10 0
CAACATAGAGTCAGGCGCTG 289 0 0.55 65. 4053 —27.40 0
CCAATGAGTCACCTCGTTCG 309 0 0.55 65. 3200 —27.30 3
GGGGTGGAGGCCCAACTATT 288 25 0.60 68. 7331 —28.20 9
CAGCGGTCTGAACCTCCATA 2832 0 0.55 66. 0663 —27.40 6

In it for each strand, distance, continuity, GC
content, melting temperature, free energy and hair-

pin are reported. Compared to other sequences from

[ 14—16]

previous publications » our approach can gener-

ate better or com parative strings in all objectives.

Otherwise, the executive time also fits our re-
quirements, and it seems very effective to find the op-
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timum solution. At the end of iterations, the fitness
value will approximate to be stable. The convergence

curve of the algorithm is shown in Fig. 4.
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Fig. 4.

Cunvcrgcnce curve.

We have been trying to apply our approach to a
large scale. But the speed slows down when the se-
quence library comes big. Now several parameters are
being adjusted for better results.

4 Conclusions

In this paper, we try to apply PSO algorithm to
produce good sequences for DNA computing. The re-
sults show that our adapted PSO algorithm is efficient
to generate a set of serials with good quality. And we
are also content with its celerity. Although it scems a
little rough and still needs some improvements, it has
already indicated the advantage of PSO algorithm
such as easy implementation and few parameters. The
approach will be applied to a larger scale after the pa-
rameters are chosen properly .

For the factors controlling DNA computing are
still not very clearly known, algorithm improvement
is not enough for the entire problem. Much work
needs to be done in the future, such as further re-
searching DNA chemistry and exploring accurate

model used in DN A sequence design.
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